Case Report

Leiomyoma of the upper extremity: A very rare presentation and review of literature

Rajesh K. Abbey, Karan Mittal, Kirti Goyal, Sahil Kalia

Department of Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Ambala, Haryana, India

INTRODUCTION

Leiomyomas are benign soft-tissue tumors arising from smooth muscles. The incidence is 4.4% of all benign soft-tissue tumors.[1] Preponderance is seen in the 3rd–6th decades of life. Uterine leiomyomas are commonest in females, but are very rare in extremities, more so in upper extremities.[2,3] These lesions have been accepted as rare neoplasms as very few cases have been described in the English literature.[4] Some amount of striated muscles are present in tissues of extremities, such as arrector pili, walls of vessels and sweat glands, and leiomyoma arises from there.[5] Leiomyomas arising in extremities are usually misdiagnosed. Leiomyomas, as tumors arising from smooth muscles, are not normally known to arise from extremities due to the paucity of smooth muscles in extremities. The clinical features cannot confirm leiomyoma though the radiological and histopathological investigations are helpful in the diagnosis and management of these tumors. The treatment comprises complete surgical excision and finally diagnosis can be made based on histopathology and immunohistochemistry (IHC). One such case of deep leiomyoma of the right mid forearm is discussed here for its extreme rarity and probability of misdiagnosing such tumors.

CASE REPORT

A 32-year-old healthy female patient presented in surgery outpatient department with a firm, oval mass on the extensor surface of the right mid forearm, which was present for the past 1 year. The mass was slowly growing in size and was occasionally painful. On examination, it was a firm, oval swelling at the extensor aspect of the middle of the right forearm, overlying the...
ulna, situated in the deeper muscle planes. The swelling was not mobile in either direction and was non-tender. Overlying skin was normal. There were no fluctuations and transillumination could not be ascertained, as swelling was deep seated. There was no neurological or muscular deficit in the corresponding arm, hand, and fingers. There were no signs of abscess or inflammation and axillary lymph nodes were absent. There was no other swelling over the body of the patient. Radiology of the swelling revealed soft-tissue mass of the size of 8 cm × 5 cm × 2.5 cm on the right forearm. Plain X-ray in frontal and lateral views showed well-marked soft-tissue shadows causing multiple, small erosions of the shaft of the ulna underlying the mass [Figure 1]. Magnetic resonance imaging demonstrated well-defined soft-tissue density lesion involving intermuscular compartments of the right forearm at the dorsal aspect of ulna. No calcification or hemorrhage was noted within the lesion. The lesion was hyperintense on T1-weighted (T1W) images [Figure 2] and remained unsuppressed on T1W fat-suppressed images. The lesion was hyperintense to the adjacent muscles also on T2-weighted images and was displacing the extensor muscles of forearm posteriorly. Cortical irregularity of ulna with no intermedullary extension was noted. There were erosions over the surface of ulna abutting the swelling, but no periosteal reaction was noted. A radiological diagnosis of “soft-tissue mass” was made.

DISCUSSION

Deep leiomyomas are extremely rare and only a few cases have been reported in literature.[1] Only 60 cases have been reported in English literature so far and such lesions are now accepted as rare neoplasms.[4] The exact pathogenesis of leiomyomas remains unclear. Goodman and Briggs[11] stated that these deep leiomyomas arise from smooth muscles rests or undifferentiated mesenchymal cells. The origin of these tumors from vessel walls has been suggested.[7]

The existence of these lesions was questioned earlier, but now it is considered to be a definitive entity.[10] These tumors are more common in lower limbs than in upper limbs.[3,12] Cutaneous leiomyomas arise from arrector pili muscles, whereas vascular type originates from smooth muscles of the vein.[13]

They are commonly seen in the 3rd–6th decades of life and females are affected twice as compared with males.[7] Misumi et al.[14] reported these lesions in the age group ranging from 3 to 62 years and 2:1 male preponderance. Solitary leiomyomas of cutaneous and subcutaneous origin do not show any preponderance for race or gender.[7] Leiomyomas of extremities may be superficial and deep and deep lesions can be vascular or avascular.[12] Deep non-vascular soft-tissue leiomyomas as in the present case are extremely rare and only few cases have been reported. Furthermore, very few cases of deep soft-tissue leiomyomas with the involvement of bone have been reported in the literature.[15] Primary leiomyomas of the bone are again very rare and only about 20 cases have been reported so far.[15] The radiological findings of the lesions on the adjacent surface of the ulna raised the suspicion of this being a bony tumor, but the possibility was ruled out by pre-operative investigations as discussed below. The bone sites reported are mandible, maxilla (tooth socket), and temporal bone. Only a few cases involving the appendicular skeleton which includes neck of femur, tibia, and ulna have been reported.[16]

Deep soft-tissue leiomyomas of forearm may mimic primary bone tumor as in the present case and the bone involvement raises further other possibilities.[15] Variations in the size of these tumors have been recorded in vascular type leiomyomas, particularly during pregnancy, but no such history was available.

Figure 1: X-ray showing small multiple erosions of the ulnar shaft

Figure 2: The magnetic resonance imaging of the soft-tissue tumor present in the intermuscular compartment
in the present case. These tumors may be confused with myositis ossificans as some isolated deep soft-tissue leiomyomas may show scattered calcifications. Myositis ossificans remains one of the differential diagnoses and the presence of scattered calcifications may further confuse the diagnosis, but no such calcifications were seen in this case, so the possibility of myositis ossificans was ruled out. These tumors are often found on extensor surface and are slow growing, and pain may bring these to the fore. All these features were noticed in the presenting case also. The pain could be because of compression of cutaneous nerves or contraction of smooth muscles. Leiomyomas may attain significant size, particularly in deeper soft-tissue compartment as found in the present case. The size of present tumor was 8 cm × 5 cm × 2.5 cm, whereas leiomyomas of upper extremities of the size of 30 cm × 29 cm × 12 cm have also been reported. The differential diagnosis includes bony tumor, leiomyosarcoma, lipoma, schwannoma, neurofibroma, tumor of tendon sheath, and hemangioma.

Irrespective of the site of their presentation, these tumors have strict diagnostic criteria. Atypia and mitotic activity are absent to minimal and seen in <1 of 50/high-powered field as was seen in the present case. The core biopsy of the lesion was taken which showed tumor arranged in the form of short interlacing fascicles. Tumor cells were mildly pleomorphic with oval- to spindle-shaped nuclei, coarse chromatin, conspicuous nucleoli, and abundant amount of cytoplasm. Malignant transformation in the leiomyomas of the finger and forearm has also been described. These tumors should be approached with precautions and only wide excision should be done until histopathological diagnosis confirms the absence of nuclear atypia, necrosis, and mitotic activity to rule out the possibility of malignancy. There were no necrosis and nuclear atypia, though infrequent mitosis was reported. In view of these findings, possibility of malignancy was ruled out. On IHC of core biopsy, the tumor cells showed strong cytoplasmic positivity for smooth muscle actin immunostain. The S-100 immunostain was non-contributory, thereby suggesting the tumor to be a leiomyoma and benign in nature. Even the histopathological reporting revealed only focal nuclear positivity for S-100. Overall features were consistent with leiomyoma. Estrogen receptors, Bcl2, CD99, and CD34, are also evaluated in such cases, but receptor status was not done in the present case, as somatic leiomyomas are not usually positive for hormonal receptors. Total excision of the tumor was done, which was firm to hard in consistency, spherical, grayish-yellow circumscribed mass of size 12 cm × 7 cm imbedded in the deeper layers of the forearm extensor muscles and abutting ulna. The lesion was non-encapsulated. The diagnosis was confirmed on histopathology and IHC as discussed earlier.
The definitive treatment of these lesions is total, wide excision as it cures and pathological diagnosis can also be confirmed. No recurrence has been reported in such cases during the mean follow-up of 58.7 months. This swelling was excised in toto. It was adherent with the surrounding muscles at places and had moderately defined facial planes. Parts of muscles adherent with the swelling were also excised along with the tumor. The eroded surface of the ulna was curetted. The wound was drained and closed in layers. Post-operative period was uneventful. The histopathological examination of lesion revealed leiomyoma without any evidence of malignancy and IHC was also confirmatory of leiomyoma.

CONCLUSION

The case is presented here for its extreme rarity and very high chances of possibility of misdiagnosis. Deep non-vascular soft-tissue leiomyoma in the forearm, though is extremely rare, should be considered for the differential diagnosis of any single/solitary slow-growing firm mass of the extremity. Adequate excision of the lesion along with excision of surrounding muscles must be done and be proved by histopathology and IHC, as was followed in the present case. Malignant transformation in these tumors is very rare and so is the recurrence. Long-term prognosis of these cases has not been reported. Although the tumor was completely excised, masterly inactivity in the form of clinicoradiological follow-up is recommended to the patients.

REFERENCES